[NeurIPS 2024] Text-Infused Attention and Foreground-Aware Modeling for Zero-Shot Temporal Action Detection
This repository contains the official implementation code for the NeurIPS 2024 paper "Text-Infused Attention and Foreground-Aware Modeling for Zero-Shot Temporal Action Detection".
- Install the required packages
pip install -r requirements.txt
- Install NMS
cd ./libs/utils
python setup.py install --user
cd ../..
- We utilize the feature for THUMOS14 and ActivityNet datasets from ActionFormer repository.
- Please download these features using their link and extract them to the ./data folder.
python train_eval.py ./configs/anet_i3d.yaml --output <output_name> --n <num_split>
python eval.py ./configs/anet_i3d.yaml ./ckpt/anet_i3d_<data_split>_<num_split>/ --n <num_split>
The codebase is based on ActionFormer and GroundingDINO. We thanks the authors for their efforts.
@article{lee2024text,
title={Text-Infused Attention and Foreground-Aware Modeling for Zero-Shot Temporal Action Detection},
author={Lee, Yearang and Kim, Ho-Joong and Lee, Seong-Whan},
journal={Advances in Neural Information Processing Systems},
volume={37},
pages={9864--9884},
year={2024}
}