-
Notifications
You must be signed in to change notification settings - Fork 599
/
Copy pathdataframe_protocol_test.py
486 lines (381 loc) · 17.7 KB
/
dataframe_protocol_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import numpy as np
import pyarrow as pa
import pytest
from typing import Any, Optional, Tuple, Dict, Iterable, Sequence
DataFrameObject = Any
ColumnObject = Any
import vaex
from common import *
from vaex.dataframe_protocol import _from_dataframe_to_vaex, _DtypeKind, _VaexBuffer, _VaexColumn, _VaexDataFrame
xfail_memory_bug = pytest.mark.xfail(
reason=(
"Erroneous due to bug where memory is released prematurely - "
"see https://github.com/vaexio/vaex/pull/2150#issuecomment-1263336551"
)
)
def test_float_only(df_factory):
df = df_factory(x=[1.5, 2.5, 3.5], y=[9.2, 10.5, 11.8])
df2 = _from_dataframe_to_vaex(df.__dataframe__())
assert df2.x.tolist() == df.x.tolist()
assert df2.y.tolist() == df.y.tolist()
assert df2.__dataframe__().get_column_by_name("x").null_count == 0
assert df2.__dataframe__().get_column_by_name("y").null_count == 0
assert_dataframe_equal(df.__dataframe__(), df)
def test_mixed_intfloat(df_factory):
df = df_factory(x=[1, 2, 0], y=[9.2, 10.5, 11.8])
df2 = _from_dataframe_to_vaex(df.__dataframe__())
assert df2.x.tolist() == df.x.tolist()
assert df2.y.tolist() == df.y.tolist()
assert df2.__dataframe__().get_column_by_name("x").null_count == 0
assert df2.__dataframe__().get_column_by_name("y").null_count == 0
assert_dataframe_equal(df.__dataframe__(), df)
def test_mixed_intfloatbool(df_factory):
df = df_factory(x=np.array([True, True, False]), y=np.array([1, 2, 0]), z=np.array([9.2, 10.5, 11.8]))
df2 = _from_dataframe_to_vaex(df.__dataframe__())
assert df2.x.tolist() == df.x.tolist()
assert df2.y.tolist() == df.y.tolist()
assert df2.z.tolist() == df.z.tolist()
assert df2.__dataframe__().get_column_by_name("x").null_count == 0
assert df2.__dataframe__().get_column_by_name("y").null_count == 0
assert df2.__dataframe__().get_column_by_name("z").null_count == 0
# Additionl tests for _VaexColumn
assert df2.__dataframe__().get_column_by_name("x")._allow_copy == True
assert df2.__dataframe__().get_column_by_name("x").size() == 3
assert df2.__dataframe__().get_column_by_name("x").offset == 0
assert df2.__dataframe__().get_column_by_name("z").dtype[0] == 2 # 2: float64
assert df2.__dataframe__().get_column_by_name("z").dtype[1] == 64 # 64: float64
assert df2.__dataframe__().get_column_by_name("z").dtype == (2, 64, "<f8", "=")
with pytest.raises(TypeError):
assert df2.__dataframe__().get_column_by_name("y").describe_categorical
if df2['y'].dtype.is_arrow:
assert df2.__dataframe__().get_column_by_name("y").describe_null == (3, 0)
else:
assert df2.__dataframe__().get_column_by_name("y").describe_null == (0, None)
assert_dataframe_equal(df.__dataframe__(), df)
def test_mixed_missing(df_factory_arrow):
df = df_factory_arrow(x=np.array([True, None, False, None, True]), y=np.array([None, 2, 0, 1, 2]), z=np.array([9.2, 10.5, None, 11.8, None]))
df2 = _from_dataframe_to_vaex(df.__dataframe__())
assert df.__dataframe__().metadata == df2.__dataframe__().metadata
assert df["x"].tolist() == df2["x"].tolist()
assert not df2["x"].is_masked
assert df2.__dataframe__().get_column_by_name("x").null_count == 2
assert df["x"].dtype == df2["x"].dtype
assert df["y"].tolist() == df2["y"].tolist()
assert not df2["y"].is_masked
assert df2.__dataframe__().get_column_by_name("y").null_count == 1
assert df["y"].dtype == df2["y"].dtype
assert df["z"].tolist() == df2["z"].tolist()
assert not df2["z"].is_masked
assert df2.__dataframe__().get_column_by_name("z").null_count == 2
assert df["z"].dtype == df2["z"].dtype
assert_dataframe_equal(df.__dataframe__(), df)
def test_missing_from_masked(df_factory_numpy):
df = df_factory_numpy(
x=np.ma.array([1, 2, 3, 4, 0], mask=[0, 0, 0, 1, 1], dtype=int),
y=np.ma.array([1.5, 2.5, 3.5, 4.5, 0], mask=[False, True, True, True, False], dtype=float),
z=np.ma.array([True, False, True, True, True], mask=[1, 0, 0, 1, 0], dtype=bool),
)
df2 = _from_dataframe_to_vaex(df.__dataframe__())
assert df.__dataframe__().metadata == df2.__dataframe__().metadata
assert df["x"].tolist() == df2["x"].tolist()
assert not df2["x"].is_masked
assert df2.__dataframe__().get_column_by_name("x").null_count == 2
assert df["x"].dtype == df2["x"].dtype
assert df["y"].tolist() == df2["y"].tolist()
assert not df2["y"].is_masked
assert df2.__dataframe__().get_column_by_name("y").null_count == 3
assert df["y"].dtype == df2["y"].dtype
assert df["z"].tolist() == df2["z"].tolist()
assert not df2["z"].is_masked
assert df2.__dataframe__().get_column_by_name("z").null_count == 2
assert df["z"].dtype == df2["z"].dtype
assert_dataframe_equal(df.__dataframe__(), df)
@xfail_memory_bug
def test_categorical():
df = vaex.from_arrays(year=[2012, 2013, 2015, 2019], weekday=[0, 1, 4, 6])
df = df.categorize("year", min_value=2012, max_value=2019)
df = df.categorize("weekday", labels=["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"])
# Some detailed testing for correctness of dtype and null handling:
col = df.__dataframe__().get_column_by_name("year")
assert col.dtype == (_DtypeKind.CATEGORICAL, 64, "u", "=")
catinfo = col.describe_categorical
assert not catinfo["is_ordered"]
assert catinfo["is_dictionary"]
assert catinfo["categories"]._col.tolist() == [
2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019
]
assert col.describe_null == (0, None)
col2 = df.__dataframe__().get_column_by_name("weekday")
catinfo2 = col2.describe_categorical
assert not catinfo2["is_ordered"]
assert catinfo2["is_dictionary"]
assert catinfo2["categories"]._col.tolist() == [
"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"
]
assert col2.dtype == (_DtypeKind.CATEGORICAL, 64, "u", "=")
assert col2.describe_null == (0, None)
df2 = _from_dataframe_to_vaex(df.__dataframe__())
assert df2["year"].tolist() == [2012, 2013, 2015, 2019]
assert df2["weekday"].tolist() == ["Mon", "Tue", "Fri", "Sun"]
assert_dataframe_equal(df.__dataframe__(), df)
@xfail_memory_bug
def test_arrow_dictionary():
indices = pa.array([0, 1, 0, 1, 2, 0, 1, 2])
dictionary = pa.array(["foo", "bar", "baz"])
dict_array = pa.DictionaryArray.from_arrays(indices, dictionary)
df = vaex.from_arrays(x=dict_array)
# Some detailed testing for correctness of dtype and null handling:
col = df.__dataframe__().get_column_by_name("x")
assert col.dtype[0] == _DtypeKind.CATEGORICAL
catinfo = col.describe_categorical
assert not catinfo["is_ordered"]
assert catinfo["is_dictionary"]
assert catinfo["categories"]._col.tolist() == ["foo", "bar", "baz"]
if df['x'].dtype.is_arrow:
assert col.describe_null == (3, 0)
else:
assert col.describe_null == (0, None)
assert col.dtype == (23, 64, "u", "=")
df2 = _from_dataframe_to_vaex(df.__dataframe__())
assert df2.x.tolist() == df.x.tolist()
assert df2.__dataframe__().get_column_by_name("x").null_count == 0
assert_dataframe_equal(df.__dataframe__(), df)
@xfail_memory_bug
def test_arrow_dictionary_missing():
indices = pa.array([0, 1, 2, 0, 1], mask=np.array([0, 1, 1, 0, 0], dtype=bool))
dictionary = pa.array(["aap", "noot", "mies"])
dict_array = pa.DictionaryArray.from_arrays(indices, dictionary)
df = vaex.from_arrays(x=dict_array)
# Some detailed testing for correctness of dtype and null handling:
col = df.__dataframe__().get_column_by_name("x")
assert col.dtype[0] == _DtypeKind.CATEGORICAL
catinfo = col.describe_categorical
assert not catinfo["is_ordered"]
assert catinfo["is_dictionary"]
assert catinfo["categories"]._col.tolist() == ["aap", "noot", "mies"]
df2 = _from_dataframe_to_vaex(df.__dataframe__())
assert df2.x.tolist() == df.x.tolist()
assert df2.__dataframe__().get_column_by_name("x").null_count == 2
assert df["x"].dtype.index_type == df2["x"].dtype.index_type
assert_dataframe_equal(df.__dataframe__(), df)
def test_string():
df = vaex.from_dict({"A": ["a", None, "cdef", "", "g"]})
col = df.__dataframe__().get_column_by_name("A")
assert col._col.tolist() == df.A.tolist()
assert col.size() == 5
assert col.null_count == 1
assert col.dtype[0] == _DtypeKind.STRING
assert col.describe_null == (3,0)
df2 = _from_dataframe_to_vaex(df.__dataframe__())
assert df2.A.tolist() == df.A.tolist()
assert df2.__dataframe__().get_column_by_name("A").null_count == 1
assert df2.__dataframe__().get_column_by_name("A").describe_null == (3,0)
assert df2.__dataframe__().get_column_by_name("A").dtype[0] == _DtypeKind.STRING
df_sliced = df[1:]
col = df_sliced.__dataframe__().get_column_by_name("A")
assert col.size() == 4
assert col.null_count == 1
assert col.dtype[0] == _DtypeKind.STRING
assert col.describe_null == (3,0)
df2 = _from_dataframe_to_vaex(df_sliced.__dataframe__())
assert df2.A.tolist() == df_sliced.A.tolist()
assert df2.__dataframe__().get_column_by_name("A").null_count == 1
assert df2.__dataframe__().get_column_by_name("A").describe_null == (3,0)
assert df2.__dataframe__().get_column_by_name("A").dtype[0] == _DtypeKind.STRING
def test_no_mem_copy():
strings = ["a", "", "cdef", "", "g"]
# data for above string array
dbuf = np.array([ 97, 99, 100, 101, 102, 103], dtype='uint8')
obuf = np.array([0, 1, 1, 5, 5, 6], dtype='int64')
length = 5
buffers = [None, pa.py_buffer(obuf), pa.py_buffer(dbuf)]
s = pa.Array.from_buffers(pa.large_utf8(), length, buffers)
x = np.arange(0, 5)
df = vaex.from_arrays(x=x, s=s)
df2 = _from_dataframe_to_vaex(df.__dataframe__())
# primitive data
x[0] = 999
assert df2.x.tolist() == [999, 1, 2, 3, 4]
# strings
assert df.s.tolist() == strings
assert df2.s.tolist() == strings
# mutate the buffer data (which actually arrow and vaex both don't support/want)
strings[0] = "b"
dbuf[0] += 1
assert df.s.tolist() == strings
assert df2.s.tolist() == strings
def test_object():
df = vaex.from_arrays(x=np.array([None, True, False]))
col = df.__dataframe__().get_column_by_name("x")
assert col._col.tolist() == df.x.tolist()
assert col.size() == 3
with pytest.raises(ValueError):
assert col.dtype
with pytest.raises(ValueError):
assert col.describe_null
def test_virtual_column():
df = vaex.from_arrays(x=np.array([True, True, False]), y=np.array([1, 2, 0]), z=np.array([9.2, 10.5, 11.8]))
df.add_virtual_column("r", "sqrt(y**2 + z**2)")
df2 = _from_dataframe_to_vaex(df.__dataframe__())
assert df2.r.tolist() == df.r.tolist()
def test_VaexBuffer():
x = np.ndarray(shape=(5,), dtype=float, order="F")
x_buffer = _VaexBuffer(x)
assert x_buffer.bufsize == 5 * x.itemsize
assert x_buffer.ptr == x.__array_interface__["data"][0]
assert x_buffer.__dlpack_device__() == (1, None)
assert x_buffer.__repr__() == f"VaexBuffer({{'bufsize': {5*x.itemsize}, 'ptr': {x.__array_interface__['data'][0]}, 'device': 'CPU'}})"
with pytest.raises(NotImplementedError):
assert x_buffer.__dlpack__()
def test_VaexDataFrame():
df = vaex.from_arrays(x=np.array([True, True, False]), y=np.array([1, 2, 0]), z=np.array([9.2, 10.5, 11.8]))
df2 = df.__dataframe__()
assert df2._allow_copy == True
assert df2.num_columns() == 3
assert df2.num_rows() == 3
assert df2.num_chunks() == 1
assert df2.column_names() == ["x", "y", "z"]
assert df2.get_column(0)._col.tolist() == df.x.tolist()
assert df2.get_column_by_name("y")._col.tolist() == df.y.tolist()
for col in df2.get_columns():
assert col._col.tolist() == df[col._col.expression].tolist()
assert df2.select_columns((0, 2))._df[:, 0].tolist() == df2.select_columns_by_name(("x", "z"))._df[:, 0].tolist()
assert df2.select_columns((0, 2))._df[:, 1].tolist() == df2.select_columns_by_name(("x", "z"))._df[:, 1].tolist()
assert_dataframe_equal(df2.__dataframe__(), df)
def test_chunks(df_factory):
x = np.arange(10)
df = df_factory(x=x)
df2 = df.__dataframe__()
chunk_iter = iter(df2.get_chunks(3))
chunk = next(chunk_iter)
assert chunk.num_rows() == 4
chunk = next(chunk_iter)
assert chunk.num_rows() == 4
chunk = next(chunk_iter)
assert chunk.num_rows() == 2
with pytest.raises(StopIteration):
chunk = next(chunk_iter)
def assert_buffer_equal(buffer_dtype: Tuple[_VaexBuffer, Any], vaexcol: vaex.expression.Expression):
buf, dtype = buffer_dtype
pytest.raises(NotImplementedError, buf.__dlpack__)
assert buf.__dlpack_device__() == (1, None)
assert dtype[1] == vaexcol.dtype.index_type.numpy.itemsize * 8
if not isinstance(vaexcol.values, np.ndarray) and isinstance(vaexcol.values.type, pa.DictionaryType):
assert dtype[2] == vaexcol.index_values().dtype.numpy.str
else:
assert dtype[2] == vaexcol.dtype.numpy.str
def assert_column_equal(col: _VaexColumn, vaexcol: vaex.expression.Expression):
assert col.size() == vaexcol.df.count("*")
assert col.offset == 0
assert col.null_count == vaexcol.countmissing()
assert_buffer_equal(col._get_data_buffer(), vaexcol)
def assert_dataframe_equal(dfo: DataFrameObject, df: vaex.dataframe.DataFrame):
assert dfo.num_columns() == len(df.columns)
assert dfo.num_rows() == len(df)
assert dfo.column_names() == list(df.get_column_names())
for col in df.get_column_names():
assert_column_equal(dfo.get_column_by_name(col), df[col])
def test_smoke_get_buffers_for_numpy_column_with_duplicate_categorical_values():
# See https://github.com/vaexio/vaex/issues/2122
df = vaex.from_items(("x", np.array([1, 1])))
df = df.categorize("x")
interchange_df = df.__dataframe__()
interchange_col = interchange_df.get_column_by_name("x")
buffers = interchange_col.get_buffers()
assert buffers['data'][0]._x.tolist() == [0, 0]
@pytest.mark.parametrize(
"x",
[
np.array([float("nan")]),
np.ma.MaskedArray(data=np.array([42]), mask=np.array([1])),
]
)
def test_null_count(df_factory, x):
df = df_factory(x=x)
interchange_df = df.__dataframe__()
interchange_col = interchange_df.get_column_by_name("x")
assert isinstance(interchange_col.null_count, int)
assert interchange_col.null_count == 1
def test_size(df_factory):
# See https://github.com/vaexio/vaex/issues/2093
x = np.arange(5)
df = df_factory(x=x)
interchange_df = df.__dataframe__()
interchange_col = interchange_df.get_column_by_name('x')
size = interchange_col.size()
assert isinstance(size, int)
assert size == 5
def test_smoke_get_buffers_on_categorical_columns(df_factory):
# See https://github.com/vaexio/vaex/issues/2134#issuecomment-1195731379
x = np.array([3, 1, 1, 2, 0])
df = df_factory(x=x)
df = df.categorize('x')
interchange_df = df.__dataframe__()
interchange_col = interchange_df.get_column_by_name('x')
interchange_col.get_buffers()
@pytest.mark.xfail()
def test_interchange_pandas_string_column():
import pandas as pd
data = ["foo", "bar"]
try:
from pandas.api.interchange import from_dataframe
except ImportError:
pytest.skip(f"pandas.api.interchange not found ({pd.__version__})")
pd_df = pd.DataFrame({"x": pd.Series(data, dtype=pd.StringDtype())})
pd_interchange_df = pd_df.__dataframe__()
vaex_df = _from_dataframe_to_vaex(pd_interchange_df)
assert vaex_df["x"].tolist() == data
def test_string_buffers(df_factory):
data = ["foo", "bar"]
x = np.array(data, dtype="U8")
df = df_factory(x=x)
if isinstance(df["x"].values, pa.lib.ChunkedArray):
pytest.xfail()
interchange_df = df.__dataframe__()
roundtrip_df = _from_dataframe_to_vaex(interchange_df)
assert roundtrip_df["x"].tolist() == data
@pytest.mark.parametrize(
"labels", [[10, 11, 12, 13], ["foo", "bar", "baz", "qux"]]
)
def test_describe_categorical(df_factory, labels):
# See https://github.com/vaexio/vaex/issues/2113
data = [3, 1, 1, 2, 0]
x = np.array(data)
df = df_factory(x=x)
df = df.categorize('x', labels=labels)
interchange_df = df.__dataframe__()
interchange_col = interchange_df.get_column_by_name('x')
catinfo = interchange_col.describe_categorical
assert isinstance(catinfo, dict)
assert isinstance(catinfo["is_ordered"], bool)
assert isinstance(catinfo["is_dictionary"], bool)
assert catinfo["is_dictionary"]
assert isinstance(catinfo["categories"], _VaexColumn)
assert catinfo["categories"]._col.tolist() == labels
@xfail_memory_bug
@pytest.mark.parametrize(
"labels", [[10, 11, 12, 13], ["foo", "bar", "baz", "qux"]]
)
def test_interchange_categorical_column(df_factory, labels):
data = [3, 1, 1, 2, 0]
x = np.array(data)
df = df_factory(x=x)
if isinstance(df["x"].values, pa.lib.ChunkedArray):
pytest.xfail()
df = df.categorize('x', labels=labels)
interchange_df = df.__dataframe__()
interchange_col = interchange_df.get_column_by_name('x')
roundtrip_df = _from_dataframe_to_vaex(interchange_df)
data_as_labels = [labels[i] for i in data]
assert roundtrip_df["x"].values.tolist() == data_as_labels
assert roundtrip_df.category_labels("x") == labels
@pytest.mark.parametrize("n_chunks", [None, 1])
def test_smoke_get_chunks(df_factory, n_chunks):
if n_chunks is not None:
pytest.xfail("get_chunks(n_chunks=...) doesn't work on already chunked columns")
df = df_factory(x=[0])
interchange_df = df.__dataframe__()
interchange_col = interchange_df.get_column_by_name('x')
if isinstance(df["x"].values, pa.lib.ChunkedArray):
pytest.skip("get_chunks() is slow/halts with chunked arrow arrays")
interchange_col.get_chunks(n_chunks=n_chunks)