-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsequence.go
780 lines (712 loc) · 21.6 KB
/
sequence.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
package g
import (
"context"
"math"
"math/rand"
"reflect"
"sync"
"time"
)
// The logicFoundValue is a helper struct that holds a boolean value
// and a Mutex to protect it from concurrent access.
//
// They are used in the In function to detect the desired result
// in a separate goroutine.
type logicFoundValue struct {
m sync.Mutex
value bool
}
// SetValue sets a new value for the Found. It locks the Mutex before
// changing the value and unlocks it after the change is complete.
func (f *logicFoundValue) SetValue(value bool) {
f.m.Lock()
defer f.m.Unlock()
f.value = value
}
// GetValue retrieves the current value of the Found. It locks the Mutex
// before reading the value and unlocks it after the read is complete.
func (f *logicFoundValue) GetValue() bool {
f.m.Lock()
defer f.m.Unlock()
return f.value
}
// Contains checks if a slice contains a specific element.
//
// It takes a slice and an element of the same type as input, and returns
// a boolean value indicating whether the element is found in the slice.
//
// T is the type of items in the slice and the element to be searched.
// The function returns true if the element is found, and false otherwise.
//
// Example usage:
//
// numSlice := []int{1, 2, 3, 4, 5}
// resultNum := g.Contains(3, numSlice)
// fmt.Println(resultNum) // Output: true
//
// strSlice := []string{"Hello", "World", "Golang"}
// resultStr := g.Contains("Python", strSlice)
// fmt.Println(resultStr) // Output: false
func Contains[T Verifiable](v T, vs []T) bool {
return In(v, vs...)
}
// Filter applies a predicate function to all items in an input
// slice and returns a new slice with the items for which the
// predicate function returns true.
//
// T is the type of items in the input slice.
// The predicate function f takes an item of type T and returns a boolean.
//
// Example usage:
//
// // Let's say you have a slice of integers and you want
// // to filter out even numbers:
// nums := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
// evens := g.Filter(nums, func(v int) bool { return v%2 == 0 })
// fmt.Println(evens) // Output: [2 4 6 8 10]
//
// // Or you may have a slice of strings and you want
// // to filter out strings with length greater than 5:
// strs := []string{"apple", "banana", "cherry", "date", "elderberry"}
// longStrings := g.Filter(strs, func(v string) bool { return len(v) > 5 })
// fmt.Println(longStrings) // Output: ["banana" "cherry" "elderberry"]
func Filter[T any](vs []T, f func(T) bool) []T {
result := make([]T, 0)
for _, v := range vs {
if f(v) {
result = append(result, v)
}
}
return result
}
// Index returns the index of the first occurrence of a specific
// element in a slice, or -1 if the element is not present.
//
// T is the type of the items in the slice and the element to be searched.
// The function returns an integer indicating the position of the first
// occurrence of the element, or -1 if the element is not found.
//
// Example usage:
//
// // Let's say you have a slice of integers and you want
// // to find the index of the number 7:
// nums := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
// idx := g.Index(nums, 7)
// fmt.Println(idx) // Output: 6
//
// // Or you have a slice of strings and you want to find
// // the index of the string "cherry":
// fruits := []string{"apple", "banana", "cherry", "date", "elderberry"}
// idx := g.Index(fruits, "cherry")
// fmt.Println(idx) // Output: 2
//
// // In case the element is not in the slice, the function will return -1:
// nums := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
// idx := g.Index(nums, 11)
// fmt.Println(idx) // Output: -1
func Index[T comparable](vs []T, v T) int {
for i, item := range vs {
if item == v {
return i
}
}
return -1
}
// Map applies a function to all items in an input slice and returns
// a new slice with the transformed items.
//
// T is the type of items in the input slice, and U is the type of
// items in the output slice.
// The function f takes an item of type T and returns a new item of type U.
//
// Example usage:
//
// // Let's say you have a slice of integers and you want to create a
// // new slice where each element is the square of the original element:
// nums := []int{1, 2, 3, 4, 5}
// squares := g.Map(nums, func(n int) int {
// return n * n
// })
// fmt.Println(squares) // Output: [1 4 9 16 25]
//
// // Or you have a slice of strings and you want to create a new slice
// // where each element is the length of the original string:
// fruits := []string{"apple", "banana", "cherry", "date", "elderberry"}
// lengths := g.Map(fruits, func(s string) int {
// return len(s)
// })
// fmt.Println(lengths) // Output: [5 6 6 4 10]
func Map[T any, U any](vs []T, f func(T) U) []U {
result := make([]U, len(vs))
for i, v := range vs {
result[i] = f(v)
}
return result
}
// Reduce takes a slice, an initial value and a fold function as input,
// and it returns a single value that results from applying the fold
// function to each item in the slice in order.
//
// T is the type of items in the slice.
// U is the type of the output and the initial value.
//
// The fold function f takes two parameters - an accumulator of type U
// and an item of type T, and returns a new accumulator.
//
// Example usage:
//
// // Let's say you have a slice of integers and you want to
// // compute the sum of all elements:
// nums := []int{1, 2, 3, 4, 5}
// sum := go.Reduce(nums, func(acc int, n int) int {
// return acc + n
// }, 0)
// fmt.Println(sum) // Output: 15
//
// // Or you have a slice of strings and you want to concatenate
// // them all into a single string:
// words := []string{"Hello", "World", "From", "Go"}
// sentence := go.Reduce(words, func(acc string, s string) string {
// return acc + " " + s
// }, "")
// fmt.Println(sentence) // Output: "Hello World From Go"
func Reduce[T any, U any](vs []T, f func(U, T) U, init U) U {
result := init
for _, v := range vs {
result = f(result, v)
}
return result
}
// Sort sorts the values in a slice in either ascending or descending order.
//
// This function modifies the original slice in-place and doesn't
// return a new slice. The type T must satisfy the Numerable interface.
//
// If the `inverse` argument is provided and set to true, the values
// are sorted in descending order. Otherwise, the values are sorted
// in ascending order.
//
// The function uses the quicksort algorithm to sort the values.
//
// Example usage:
//
// // If you have a slice of integers that you want
// // to sort in ascending order:
// nums := []int{5, 2, 7, 8, 1, 9}
// g.Sort(nums)
// fmt.Println(nums) // Output: [1 2 5 7 8 9]
//
// // If you want to sort the same slice in descending order:
// nums := []int{5, 2, 7, 8, 1, 9}
// g.Sort(nums, true)
// fmt.Println(nums) // Output: [9 8 7 5 2 1]
//
// // This function is generic and can work with any type
// // that satisfies the Numerable interface.
// // For example, if you have a slice of floats:
// floats := []float64{5.5, 2.2, 7.7, 8.8, 1.1, 9.9}
// g.Sort(floats)
// fmt.Println(floats) // Output: [1.1 2.2 5.5 7.7 8.8 9.9]
func Sort[T Verifiable](v []T, inverse ...bool) {
inv := All(inverse...)
if inv {
quicksortDesc(v, 0, len(v)-1)
} else {
quicksortAsc(v, 0, len(v)-1)
}
}
// The quicksortAsc is a helper function that performs the quicksort
// algorithm on a slice in ascending order.
func quicksortAsc[T Verifiable](v []T, low, high int) {
if low < high {
pivotIndex := partitionAsc(v, low, high)
quicksortAsc(v, low, pivotIndex-1)
quicksortAsc(v, pivotIndex+1, high)
}
}
// The quicksortDesc is a helper function that performs the quicksort
// algorithm on a slice in descending order.
func quicksortDesc[T Verifiable](v []T, low, high int) {
if low < high {
pivotIndex := partitionDesc(v, low, high)
quicksortDesc(v, low, pivotIndex-1)
quicksortDesc(v, pivotIndex+1, high)
}
}
// The partitionAsc is a helper function that selects a pivot and partitions
// the slice around it in ascending order.
func partitionAsc[T Verifiable](v []T, low, high int) int {
pivot := v[high]
i := low - 1
for j := low; j < high; j++ {
if v[j] < pivot {
i++
v[i], v[j] = v[j], v[i]
}
}
v[i+1], v[high] = v[high], v[i+1]
return i + 1
}
// The partitionDesc is a helper function that selects a pivot and partitions
// the slice around it in descending order.
func partitionDesc[T Verifiable](v []T, low, high int) int {
pivot := v[high]
i := low - 1
for j := low; j < high; j++ {
if v[j] > pivot {
i++
v[i], v[j] = v[j], v[i]
}
}
v[i+1], v[high] = v[high], v[i+1]
return i + 1
}
// Value returns the first non-zero value from the parameters.
//
// The function checks each parameter in the order they are passed to
// the function and returns the first parameter that is not a zero value.
// If all parameters are zero values, the function returns a zero value
// for the type T of the parameters.
//
// This function is generic and can work with any type T.
//
// Example usage:
//
// // If you want to find the first non-zero value among
// // several integer variables:
// a, b, c := 0, 0, 3
// fmt.Println(g.Value(a, b, c)) // Output: 3
//
// // If all values are zero, the function will return zero of the type T:
// a, b, c := 0, 0, 0
// fmt.Println(g.Value(a, b, c)) // Output: 0
//
// // This function can work with any type. For example,
// // if you have several string variables:
// s1, s2, s3 := "", "Hello", "World"
// fmt.Println(g.Value(s1, s2, s3)) // Output: Hello
//
// // If all strings are empty (which is the zero value for strings),
// // the function will return an empty string:
// s1, s2, s3 := "", "", ""
// fmt.Println(g.Value(s1, s2, s3)) // Output: ""
//
// Warning: the function checks the list as the whole object, that is:
//
// l := []int{0, 1, 2, 3}
// g.Value(l) // Returns: []int{0, 1, 2, 3}, list is not empty object
// g.Value(l...) // Returns: 1, because 1 is the first not empty value
func Value[T any](v ...T) T {
if len(v) != 0 {
for _, val := range v {
if !IsEmpty(val) {
return val
}
}
}
return reflect.Zero(reflect.TypeOf((*T)(nil)).Elem()).Interface().(T)
}
// Zip takes two slices and returns a slice of pairs.
// Each pair contains an item from each of the two slices,
// in the same position. The length of the returned slice is
// equal to the minimum of the lengths of the two input slices.
//
// If one slice is shorter than the other, the extra elements of
// the longer slice are ignored.
//
// The function returns a slice of struct where each struct has two fields:
// First and Second, representing the elements from the first and second
// slices respectively.
//
// Example usage:
//
// // If you have two slices of the same length:
// a := []int{1, 2, 3}
// b := []string{"one", "two", "three"}
// pairs := g.Zip(a, b)
// for _, pair := range pairs {
// fmt.Printf("(%d, %s)\n", pair.First, pair.Second)
// }
// // Output: (1, one) (2, two) (3, three)
//
// // If one slice is shorter than the other:
// a := []int{1, 2}
// b := []string{"one", "two", "three"}
// pairs := g.Zip(a, b)
// for _, pair := range pairs {
// fmt.Printf("(%d, %s)\n", pair.First, pair.Second)
// }
// // Output: (1, one) (2, two)
// // Note that the third element of the second slice is ignored.
func Zip[T, U any](a []T, b []U) []Pair[T, U] {
minLength := len(a)
if len(b) < minLength {
minLength = len(b)
}
result := make([]Pair[T, U], minLength)
for i := 0; i < minLength; i++ {
result[i] = struct {
First T
Second U
}{a[i], b[i]}
}
return result
}
// Distinct returns a new slice with unique values from the input slice.
//
// It removes duplicates from the input slice and returns a new slice
// with unique values in the same order as they appear in the input slice.
//
// This function is generic and can work with any type T.
//
// Example usage:
//
// // If you have a slice with duplicates:
// numbers := []int{1, 2, 2, 3, 3, 3, 4, 4, 4, 4}
// uniqueNumbers := g.Distinct(numbers)
// fmt.Println(uniqueNumbers) // Output: [1 2 3 4]
//
// // This function also works with slices of other comparable types,
// // like strings:
// words := []string{"hello", "world", "hello", "gophers"}
// uniqueWords := g.Distinct(words)
// fmt.Println(uniqueWords) // Output: ["hello" "world" "gophers"]
func Distinct[T comparable](v []T) []T {
uniqueMap := make(map[T]bool)
uniqueValues := make([]T, 0)
for _, item := range v {
if !uniqueMap[item] {
uniqueMap[item] = true
uniqueValues = append(uniqueValues, item)
}
}
return uniqueValues
}
// Shuffle randomly shuffles the elements in the input slice.
//
// It modifies the input slice in-place by rearranging the elements
// in a random order using the Fisher-Yates algorithm.
//
// This function is generic and can work with any type T.
//
// Example usage:
//
// // If you have a slice and want to shuffle its elements:
// numbers := []int{1, 2, 3, 4, 5}
// g.Shuffle(numbers)
// fmt.Println(numbers)
// // Prints the slice numbers in a random order, e.g., [3 1 5 2 4]
//
// // This function also works with slices of other types, like strings:
// words := []string{"hello", "world", "gophers", "Go", "OpenAI"}
// g.Shuffle(words)
// fmt.Println(words)
// // Prints the slice words in a random order, e.g.,
// // ["Go" "gophers" "hello" "OpenAI" "world"]
func Shuffle[T any](v []T) {
rand.Seed(time.Now().UnixNano())
for i := len(v) - 1; i > 0; i-- {
j := rand.Intn(i + 1)
v[i], v[j] = v[j], v[i]
}
}
// Product calculates the product of all numeric values in the input slice.
//
// It iterates through the input slice and multiplies all the numeric values
// together to compute the product. The type T must satisfy the Numerable
// interface.
//
// If there are no numeric values in the slice, the function returns 1.
//
// Example usage:
//
// // Calculate the product of a slice of integers:
// nums := []int{2, 3, 4}
// p := g.Product(nums)
// fmt.Println(p) // Outputs: 24
//
// // Compute the product of a slice of floats:
// nums := []float64{1.2, 3.4, 5.6}
// p := g.Product(nums)
// fmt.Println(p) // Outputs: 22.848
//
// // If the slice is empty, the function returns 1:
// nums := []int{}
// p := g.Product(nums)
// fmt.Println(p) // Outputs: 1
func Product[T Numerable](v ...T) T {
if len(v) == 0 {
return 1
}
prod := v[0]
for _, val := range v[1:] {
prod *= val
}
return prod
}
// Merge merges two sorted arrays into a single sorted array.
//
// It takes two sorted arrays a and b as input and returns a single
// sorted array that contains all the elements from both arrays.
//
// The function assumes that both input arrays are already sorted
// in ascending order.
//
// Example:
//
// a := []int{1, 3, 5}
// b := []int{2, 4, 6}
// mergedUnsort := g.Merge(a, b) // [1 3 5 2 4 6]
// mergedSort := g.Merge(a, b, true) // [1 2 3 4 5 6]
//
// This function is generic and can work with any type T.
func Merge[T Verifiable](a []T, b []T, sort ...bool) []T {
merged := make([]T, 0, len(a)+len(b))
merged = append(merged, a...)
merged = append(merged, b...)
if All(sort...) {
Sort(merged)
}
return merged
}
// In is a generic function that checks if a given value 'v' of type 'T' exists
// in a variadic parameter list of 'T'. The function uses the 'Verifiable' type
// constraint which allows it to operate on numeric types and strings.
//
// This function leverages goroutines for concurrent computation when the size
// of the list is large. It splits the list into chunks (based on the number
// of CPU cores) and checks each chunk in a separate goroutine. This allows the
// function to take advantage of multi-core processors and improves performance
// on large data sets.
//
// A 'sync.WaitGroup' is used to ensure all goroutines have completed, and a
// thread-safe structure 'Found' is used to safely access the shared 'found'
// variable across goroutines.
//
// Usage:
//
// // Define a slice of integers.
// numbers := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
//
// // Check if '5' exists in the slice.
// exists := g.In(5, numbers...)
// fmt.Println(exists) // Output: true
//
// // Define a slice of strings.
// words := []string{"apple", "banana", "cherry", "date", "elderberry"}
//
// // Check if 'date' exists in the slice
// exists = g.In("date", words...)
// fmt.Println(exists) // Output: true
func In[T Verifiable](v T, list ...T) bool {
var wg sync.WaitGroup
// Will use context to stop the rest of the goroutines
// if the value has already been found.
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
p := parallelTasks
found := &logicFoundValue{}
// If the length of the slice is less than or equal to
// the minLoadPerGoroutine, then we do not need
// to use goroutines.
if l := len(list); l == 0 {
return false
} else if l/p < minLoadPerGoroutine {
for _, b := range list {
if b == v {
return true
}
}
return false
}
chunkSize := len(list) / p
for i := 0; i < p; i++ {
wg.Add(1)
start := i * chunkSize
end := start + chunkSize
if i == p-1 {
end = len(list)
}
go func(start, end int) {
defer wg.Done()
for _, b := range list[start:end] {
// Check if the context has been cancelled.
select {
case <-ctx.Done():
return
default:
}
if b == v {
found.SetValue(true)
cancel() // stop all other goroutines
return
}
}
}(start, end)
}
wg.Wait()
return found.GetValue()
}
// Range generates a slice of integers based on the provided parameters.
// Returns nil if the parameters are invalid.
//
// - If a single parameter is passed (Range(n)), the function returns
// a slice from 0 to n-1.
// - If two parameters are passed (Range(n, m)), the function returns
// a slice from n to m-1.
// - If three parameters are passed (Range(n, m, s)), the function returns
// a slice from n to m-1 with a step size of s.
//
// The function returns nil if:
// - The step size is zero
// - The range is decreasing but step is positive
// - The range is increasing but step is negative
// - The resulting sequence would exceed MaxRangeSize
//
// The maximum size of the generated slice is set by the MaxRangeSize constant.
//
// Example usage:
//
// result := g.Range(5)
// // Output: [0, 1, 2, 3, 4]
//
// result := g.Range(3, 7)
// // Output: [3, 4, 5, 6]
//
// result := g.Range(1, 10, 2)
// // Output: [1, 3, 5, 7, 9]
//
// result := g.Range(10, 0, -1)
// // Output: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
//
// result := g.Range(1, 10, 0)
// // Output: nil - step size cannot be zero
//
// result := g.Range(10, 1, 1)
// // Output: nil - decreasing range with positive step
func Range(a int, opt ...int) []int {
var n, m, s int = 0, a, 1
// Sets range as n to m-1.
if len(opt) > 0 {
n = a
m = opt[0]
}
// Sets step size.
if len(opt) > 1 {
s = opt[1]
}
// Ignore incorrect parameters.
if s == 0 || s < 0 && n <= m || s > 0 && n >= m {
return nil
}
// Calculate the number of steps and create the slice of this size.
steps := Abs(int(math.Ceil(float64(m-n) / float64(s))))
// Limit the size of the slice.
if steps >= MaxRangeSize {
return nil
}
result := make([]int, steps)
for i := 0; i < steps; i++ {
result[i] = n + i*s
}
return result
}
// Rangef generates a slice of values based on the provided parameters
// and a given function as func(int) T.
// Returns nil if the parameters are invalid.
//
// - If a single parameter is passed (Range(fn, n)), the function returns
// a slice from 0 to n-1 and pass it in fn.
// - If two parameters are passed (Range(fn, n, m)), the function returns
// a slice from n to m-1 and pass it in fn.
// - If three parameters are passed (Range(fn, n, m, s)), the function
// returns a slice from n to m-1 with a step size of s, and pass it in fn.
//
// The function returns nil if:
// - The step size is zero
// - The range is decreasing but step is positive
// - The range is increasing but step is negative
// - The resulting sequence would exceed MaxRangeSize
//
// Example usage:
//
// func appleFactory() func(int) string {
// var appleVarieties = []string{
// "Gala",
// "Fuji",
// "Honeycrisp",
// "Red Delicious",
// "Granny Smith",
// "Golden Delicious",
// "Pink Lady",
// "Braeburn",
// "McIntosh",
// "Jazz",
// }
//
// return func(i int) string {
// if i >= 0 && i < len(appleVarieties) {
// return appleVarieties[i]
// }
// return "-"
// }
// }
//
// result := g.Rangef(appleFactory(), 3)
// // Output: [Gala Fuji Honeycrisp]
//
// result := g.Rangef(appleFactory(), 4, 7)
// // Output: [Granny Smith Golden Delicious Pink Lady]
//
// result := g.Rangef(appleFactory(), 7, 12, 2)
// // Output: [Braeburn Jazz -]
//
// result := g.Rangef(appleFactory(), 1, 10, 0)
// // Output: nil - step size cannot be zero
func Rangef[T any](fn func(int) T, a int, opt ...int) []T {
var n, m, s int = 0, a, 1
// Sets range as n to m-1.
if len(opt) > 0 {
n = a
m = opt[0]
}
// Sets step size.
if len(opt) > 1 {
s = opt[1]
}
// Ignore incorrect parameters.
if s == 0 || s < 0 && n <= m || s > 0 && n >= m {
return nil
}
// Calculate the number of steps and create the slice of this size.
steps := Abs(int(math.Ceil(float64(m-n) / float64(s))))
steps = If(steps >= MaxRangeSize, 0, steps) // limit the size of the slice
result := make([]T, steps)
for i := 0; i < steps; i++ {
result[i] = fn(n + i*s)
}
return result
}
// Reverse changes slice with elements in reverse order.
//
// It takes a slice 'v' of any type 'T' and swaps the elements
// in-place to reverse their order.
//
// Example usage:
//
// numbers := []int{1, 2, 3, 4, 5}
// Reverse(numbers)
// // numbers: [5, 4, 3, 2, 1]
//
// names := []string{"Alice", "Bob", "Charlie", "Dave"}
// Reverse(names)
// // names: ["Dave", "Charlie", "Bob", "Alice"]
//
// empty := []bool{}
// Reverse(empty)
// // empty: []
func Reverse[T any](v []T) {
for i, j := 0, len(v)-1; i < j; i, j = i+1, j-1 {
v[i], v[j] = v[j], v[i]
}
}